
REPORT DOCUMENTATION PAGE 1 No. Ap04od018

Public ooregoI~fl for tf.s collection o• .nform'ation ii estimated to average I hour per response, including the time for reviewg snctru ons. searching eaistmg data sowrceLga9t. rng ad miaanng the dara needed. and cOmletIng and reviewing the collection of Information. Send comments regarldn thg burden estimate Or ag other ae of th

collection of informnation, including suggestions for reducing this 1urde"L to Washington Headquarters Services. ODrectorate for information Operations and Reports. 1215 Jefferson
Oai i•ghway. S..te 1204. Arlington. VA 22202-4302. and to the Office of Manegement and Budget. Paperwork Reduction Project (0704-0101). Washington. DC 20503,

1. AGENCY USE ONLY (Leave blnk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FEBRUARY 1993 FINAL 01/15/87-11/15/92
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

AN EFFICIENT XUMERICAL METHOD FOR THREE DIMENSIONAL- C:-.E33615-86-C-3015
HYPERSONIC FLOW PE: 61102

PR: 2307
6. AUTHOR(S) TA: N6
ROBERT W. MACCORMACK WU: 12

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

STANFORD UNIVERSITY
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
STANFORD CA 94305

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

FLIGHT DYNAMICS DIRECTORATE AGENCY REPORT NUMBER

WRIGHT LABORATORY WL-TR-93-3012
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB OH 45433-7562

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

13. ABSTRACT (Maximum 200 words) The present paper presents an efficient algorithm for solving

the unsteady Navlar-Stokes equations. It is a line Gauss-Seidel relaxation implicit
algorithm for three-dimensional flow. Such algorithms have shown very fast con-
vergence properties for two-dimensional flow. The extension to three-dimensions has
been troublesome. The proposed algorithm presented herein was developed to solve
these difficulties. A computer program based upon this algorithm has been written
to solve two-dimensional plane symmetric, axisymmetric or three-dimensional flow
of a perfect gas, or a real gas model for air with five species (N2, 02, NO, N, 0)
or seven species (N2, 02, NO, NO+, N, 0, e-). The program can simulate a gas in
thermal equilibrium or in thermal nonequilibrium with two temperatures
(Translational-Rotational and Vibrational) or three temperatures (Translational,
Rotational, and Vibrational). Convergence to engineering accuracy is generally
achieved in under a hundred time steps for both two- and three-dimensional flow.
Provision is made within the program for a one or two equation turbulence model.
Applications are presented to verify the code by comparison with experiment and
flight tests. Finally, the numerically simulated flow about a hypersonic vehicle
at Mach 25 in powered flight is presented. ,,

14. SUBJECT TERMS 15. NUMBER OF PAGES

Computational Fluid Dynamics, Navier-Stokes Equations, 33
Hypersonic Flow, Real Gas Effects 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED 1UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Pr9escrbed by .ANSI Sd '39 '8
298-102



ACKNOWULENGDDIT

The author wishes to acknowledge the financial support for
this work from the Department of the Air Force under contract No.
F33615-86-C-3015, and Dr. J. Eric Holcomb of the Boeing Aerospace
Company for his assistance in using his three dimensional grid
generation procedures (see J.E. Holcomb, "Development of a Grid
Generator to Support 3-D Nultizone Navier-Stokes Analysis," AIAA
Paper No.87-0203, 1987]. All figures were prepared using the
TECPLOT plotting software of Autec Engineering Inc.

JJTIO QUALIT'Y INSPECTED 5

Acce-JC1 FO!

ý 4 AJdcr

DtJ ~iI



COmTEWS

Acknowledgements

List of Figures iv

Introduction

Governing Equations 3

Numerical Method 4

Dissipation 8

Difficulties at Shocks 9

Stability 10

Computational Results 10

Lobb Test Case 11

RAM-C II Flight Measurements 11

Generic Hypersonic Vehicle 13

Conclusion 14

References 16

Figures 18

iii



LIST OF FIGURES

1. Computational mesh for Lobb test case ....................... 18

2. Comparison of shock wave locations, Lobb test case .......... 18

3. Pressure contours, Lobb test case ........................... 19

4. NO mass fractions, Lobb test case ........................... 19

5. Stagnation streamline temperature profiles, Lobb test case.. 20

6. Translational temperature contours .......................... 20

7. Rotational temperature contours ............................. 21

8. Vibrational temperature contours ............................ 21

9. Computational mesh, RAM-C test case ........... 22

10. Pressure contours, RAM-C test case .......................... 22

11. Stagnation streamline temperature profiles, RAM-C test case 23

12. Stagnation streamline mass fractions, RAM-C test case ...... 23

13. N, mass fraction contours, RAM-C test case ................. 24

14. 02 mass fraction contours, RAM-C test case................. 24

15. Translational temperature contours, RAM-C test case ........ 25

16. Rotational temperature contours, RAM-C test case ........... 25

17. Vibrational temperature contours, RAMM-C test case ....... e. 26

18. Peak electron number density, RAM-C test case .............. 26

19. Generic hypersonic vehicle definition ...................... 27

20. Flight conditions for generic hypersonic vehicle ........... 27

21. Computational strategy for hypersonic vehicle flow field... 28

22. Heat transfer at nose section of hypersonic vehicle ........ 28

23. Surface mesh of fore body section of hypersonic vehicle .... 29

24. Mesh at symmetry plane of hypersonic vehicle ............... 29

25. Pressure contours at symmetry plane of hypersonic vehicle.. 30

iv



26. Velocity vectors at symmetry plane of hypersonic vehicle... 30

27. Surface mesh of hypersonic vehicle ......................... 31

28. Surface pressure contours of hypersonic vehicle ............ 31

29. Heat transfer contours of hypersonic vehicle ............... 32

30. Thrust, lift, drag and heat transfer for hypersonic vehicle 32

31(a). Section mesh sizes and time steps to convergence for
numerical solution of flow past a generic hypersonic
vehicle in powered flight ............................... 33

31(b). Computational cost of numerical solution for flow past a
generic hypersonic vehicle in powered flight ............ 33

v



INTRODUCTION

The development of computational fluid dynamics (CFD)
procedures has progressed extremely rapidly during the past two
decades. The parallel rapid development in computer hardware
resources and architectures has not only matched the explosive
algorithm development but has indeed provided and continues to
provide its impetus. Together, the resources are now available for
the numerical simulation of the flow about complex three
dimensional aerospace configurations.

A particularly large growth has occurred during the last few
years in the computer hardware sector of scientific workstations.
Many vendors are supplying fairly advanced systems for under twenty
thousand dollars. Is such a workstation sufficient for solving for
the compressible viscous flow about a complete aerospace
configuration, perhaps representing a leveling of the playing field
previously reserved for those with access to supercomputers?
Memory capabilities appear to be expanding rapidly, faster
apparently than comparable improvements in hardware speed. The
efficiency of the new numerical algorithms may be the deciding
factor in answering the above question, at least for the near
future.

In reality, the workstation will not replace the
supercomputer. However, many of the tasks now performed on
supercomputers, such as the important task of program development,
can be down shifted to workstations. The tasks of large number
crunching can be left to the more powerful supercomputers. In
computational fluid dynamics, program development requires many
runs of a developing computer code. In three dimensions, even on
coarse grids, these runs can be long enough to require the use of
a supercomputer. Efficient algorithm development toward faster
flow solvers is shortening the durations of these test runs so that
in time more and more of them can be made on inexpensive
workstations.

Hypersonic flow has been an area of much scientific interest
in recent years. The description of a gas flowing about a body
traveling at hypersonic speeds is very complex. It must include
finite rate chemical reactions as the freestream gas dissociates
upon passing through the very strong bow shock wave. Also, because
these changes of state occur so rapidly, the gas can be expected to
be in thermal nonequilibrium, requiring the determination of
separate translational, rotational and vibrational temperatures of
the gas. These two additional gas features, chemical reaction and
thermal nonequilibrium, require the solution of many additional
equations. A perfect gas description in three dimensions requires
one continuity equation, three momentum equations and a single
energy equation. On the other hand, a nonequilibrium gas requires
a continuity equation for each species present, three momentum
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equations plus an energy equation for each thermal mode present.
For a seven species model for air (N2,02,NO,NO0,N,O,e-) and a three
temperature gas model (T,TrTvib), thirteen equations are required
as compared to five for a perfect gas. Because the gas description
is very much more complicated for hypersonic flow, the efficiency
of the numerical solution method is ot high importance.

The main purpose of the report is to present an efficient
numerical method for solving the equations of viscous compressible
flow in three dimensions. A main goal of the present study was to
apply this method to simulate the flow about a generic hypersonic
vehicle in powered flight. This is a rather monumental task that
requires very high numerical efficiency to make the calculation
possible. The method presented herein is fully implicit and uses
block tridiagonal line inversion with Gauss-Seidel relaxation. The
block tridiagonal procedure requires the use of a structured grid.
This type of algorithm has been very successful in two dimensions
where the line direction extended from the body, through the
boundary layer fine grid, across the shock wave and into the
freestream and where the streamwise direction was treated in a
Gauss-Seidel manner. This numerical procedure typically converges
for steady-state solutions in under 100-time steps instead of the
usual several hundred or thousands for viscous compressible flow
simulations. The extension to three-dimensions has proved to be
difficult. To avoid a directional bias, a block tridiagonal line
inversion procedure is required in the spanwise direction as well.
The stitching together of two-line inversion procedures with Gauss-
Seidel relaxation to form a numerical method of comparable
efficiency to the two-dimensional method will be presented.

A computer program based upon this method has been coded. The
computer code has not been vectorized. It has been run only on a
serial processing workstation. In addition, for developmental
purposes, the program has been written so that Jacobians, for
example, have been written as subroutines and called repeatedly by
other parts of code. This is less efficient than placing them
where needed within the code, but, on the other hand, modifications
to the code need to be made only at one place. Furthermore, the
Jacobians of the flux vectors in each coordinate direction (6F/6U,
6G/6U and 6H/6U etc.) have been written as a single generalized
Jacobian with rotational direction cosines that can be used to
determine each individual coordinate direction Jacobian. Again,
Jacobian code modifications using this formulation require changes
in only one place in the computer program. For the computational
efficiency of production runs, unlike code developmental runs, this
formulation should be removed and the resulting code should be
vectorized to the fullest degree possible.

The computer code was applied to two test-flow problems for
which experimental or flight data was available for program
validation. The first case simulated the experiment of Lobb (1],
1964, for Mach 15.3 flow past a sphere in air which exhibited
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chemical nonequilibrium and thermal vibrational nonequilibrium
behavior. The second test case simulated the RAM-C II flight
measurements [2] made in the late 1960's of peak electron number
densities in the Mach 25.9 flow past a sphere cone body at 71 km.
altitude. This flow exhibited ionization and translational,
rotational and vibrational nonequilibrium. Finally, the computer
program was applied to simulate the flow about a generic hypersonic
vehicle at Mach 25 at high altitude. The body consisted of a
sphere-cone-cylinder fuselage with a delta wing attached. The
delta wing tips were folded up to resemble a hypersonic glider. An
engine was then placed below and attached to the fuselage-wing
surface. The underside of the body downstream of the engine exit
was contoured to form a nozzle surface. The flow entering the
engine inlet plane was accelerated to produce thrust at the exit
plane. Body drag, engine ram drag, engine thrust and surface heat
transfer were calculated.

The present study combines the PhD thesis research on
hypersonic nonequilibrium flow of three former Stanford University
graduate students, Dr. Graham V. Candler (1988) (3], Dr. Tahir
Gokcen (1989) [4], and Dr. Xiao-lin Zhong (1991) [5] with the three
dimensional algorithm research presented in Refs. [6,7] to study
three-dimensional nonequilibrium hypersonic viscous flow.

GOVERNING EQUATIONS

The Equations governing nonequilibrium viscous compressible
flow can be written in vector form as:

au+aF+_aG+ aHlw,
a t ax ay az

where U=[p 1 ,p 2 1 ... ,pppu,pv,pw,e,,...,e..]T, F,G, and H are flux
vectors, and W is a source term vector. The flux vectors contain
terms representing the convection of species mass, momentum and
energy, pressure and viscous stress, work and heat transfer. The
viscous and heat transfer coefficients are obtained from Blottner,s
curve fits [8] and use of Eucken's [9] and Wilke's relations [10].
The source vector W contains terms for the production and loss of
specie densities through chemical reaction and energy transfer
through thermal relaxation. Vibrational relaxation is modeled
using Park's modified Landau-Teller rate equation [3] and
rotational relaxation is modeled using Parker's formulation for
relaxation times [11]. Expressions relating vibrational energies
to vibrational temperature and energies contained in excited
electron states were taken from Candler (3].

The air chemistry model as obtained from Candler's PhD thesis

[3] is given below (see top of next page).
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N2  + M • 2N + M

02 + M # 20 + M
NO + M • N + 0 + M
N2  + 0 = NO + N

NO + 0 • + N;

N + 0 • NO+ + e-

NUMERICAL METHOD

Chakravarthy in 1984 [12] presented unfactored implicit
relaxation methods for solving the Euler equations. By avoiding
the technique of approximate factoring and the error it introduces
that slows convergence, his approach is very efficient for solving
the equations of compressible fluid flow. The approach uses type
dependent differencing and line relaxation. These are essentially
the same techniques used earlier by Murman and Cole [13] for
solving the transonic small disturbance equation and later in
rotated form by Jameson [14] for the full potential equation. The
type dependent differencing for the Euler equations can use "flux
vector splitting" introduced by Steger and Warming [15] or now the
more popular "flux difference vector splitting" of Roe [16]. The
line relaxation consists of block tridiagonal matrix inversions in
the across the flow direction with Gauss-Seidel relaxation used in
the streamwise direction. The type dependent differencing is
upwind and creates implicit block matrix equations with stronger
weights given to the diagonal matrix elements than would otherwise
occur using central difference approximations. This facilitates
the use of an unfactored relaxation algorithm for the solution of
the matrix equation instead of the more common direct approximate
factorization algorithm or direct Gaussian elimination with their
inherent numerical inefficiencies.

In 1985 efficient Gauss-Seidel line relaxation algorithms for
solving the Navier-Stokes equations in two dimensions were
presented [17,18]. Their accuracy was improved for calculating
laminar and turbulent shear layers in 1987 [19]. Accurate two-
dimensional Navier-Stokes calculations were obtained in 100-time
steps or less with CFL numbers reaching one billion. Also in 1987,
Candler extended the technique to three dimensions for flow past
aircraft-like configurations [20]. Block tridiagonal line inversion
was used in the normal to the body direction and Gauss-Seidel
relaxation in the streamwise and around the body directions. In
1988 difficulties with this method were encountered for three-
dimensional cascade flow [6]. Flows that should remain two-
dimensional became three-dimensional because the Gauss-Seidel
procedure of using the latest available data introduced an
asymmetry as each plane was updated using new data on one side and
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older data on the other side of the block tridiaqonal "line". In
addition, the cascade flow required block tridiaqonal inversion
procedures in both cross stream directions, blade to blade and side
wall to side wall. The construction of a three-dimensional
unfactored algorithm containing block tridiagonal inversion in two
directions is not trivial. The statement found in many algorithm
development papers, including this author's, "the extension to
three dimensions is straight forward" is untrue.

The three-dimensional implicit algorithm used for the results
presented later does combine block tridiagonal inversion in two
directions with Gauss-Seidel relaxation in the third direction. It
is first order accurate in time and second or third crder accurate
in space. It could be made second order in time also, but for the
problems considered here, for which rapid convergence to steady
state was the goal, order of accuracy in time loses its meaning.
The governing Navier-Stokes equations with nonequilibrium effects
were approximated using low dissipation flux split approximations
for the Euler terms as described in Ref. [19] and central
difference approximations for the viscous terms.

Consider the flux at surface i+1/2 lying midway between mesh
points (i,j,k) and (i+l,j,k). The flux F can be split as follows.

Fi+1/2,1,k= A~i+I/ 2UL + A'i+l/ 2 UR

where A is the Jacobian 6F/6U, A+ and A- represent the split
Jacobians containing the positive and negative eigenvalues,
respectively, of A, and A = A+ + A-. UL represents the value of U
at the surface as approached from the left, and U, is similarly
defined using data from the right. At flux surfaces that are
supersonic on both sides the flux is not split at all; either A+ or
A- is null. At surfaces within subsonic regions of the flow and
away from shock waves third order flux splitting is achieved by (1)
using an interpolation formula and the nearest four points, (i-
l,j,k), (i,j,k), (i+l,j,k) and (i+2,j,k), to define the elements of
the split flux Jacobian matrices, and (2) using interpolation with
three upwind biased points, (i-l,j,k), (i,j,k) and (i+l,j,k), to
define UL and similarly using points (i,j,k), (i+l,j,k) and
(i+2,j,k) to define U,. The third order approximations are
important within boundary layers to prevent the numerical
dissipation introduced by the flux splitting from significantly
competing with viscous terms of the governing differential
equations. Through reflective boundary conditions, third order
differencing can be carried all the way to the wall. Finally, at
shock waves, where pressure gradients are large, and the flow is
supersonic on one side of surface i+1/2 and subsonic on the other,
first order flux splitting is used.

For each mesh point in a three-dimensional flow the algorithm
uses data from 24 four neighboring points to evaluate all the
spacial derivatives of the full Navier-Stokes equations explicitly.
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This is used to construct the explicit driving term, sometimes
called the residual term, on the right hand side of the difference
equations. The left hand implicit side of the difference equations
uses data at only six mesh points plus the central point itself.
Only the thin layer Navier-Stokes terms are evaluited implicitly.
The mesh points are located at the centroids of finite volumes
forming the discretized space surrounding the body. The resulting
block seven-diagonal matrix equation is formulated in delta law
form. That is, the solution change per time step, 6U, is the
unknown to be solved for. The matrix equation is given below.

A8Uik+PUij+1.,k +&?Ui.j.k +

D8Uj+ 1 ,ý ,k+E U' 1 ,j~k +

-C"8U~j~k1+66i,j,k-1:_ ~~~

wher e

AU -DF DG DH•UiJ =-At( I '+ DG+ W)_•

16Ui j kAX Ay Az jk

The hepta-diagonal matrix equation is inverted by relaxation
as follows. The mesh points are ordered into an i,j,k array. The
values for the unknown 6Us are initialized by setting them to zero.
For each i plane a block tridiagonal inversion in the j direction
is carried out for each value of k in the plane. During this
inversion, evaluations needed at points (i+l,j,k) and (i-l,j,k)
adjacent to a line of constant i,k use the latest available data in
line Gauss-Seidel fashion. Evaluations needed at off line points
(i,j,k+l) and (i,j,k-l) may use data from the last block
tridiagonal inversion along the line of constant i,j, if it exists,
in line Jacobi fashion. Yet, in the present code an axisymmetric
approximation for these terms is used instead. This approximation
effectively replaces these two terms at (i,j,k+l) and (i,j,k-l)
with a new one at the diagonal element (i,j,k). This first step
procedure is shown below (see top of the next page). In the
equation for this procedure the 6Us at (i,j+l.k), (i,j,k) and (i,j-
l,k) are solved for simultaneously.

After completion of the first step, block tridiagonal
inversion in the k direction proceeds for each j in the i plane.
As before, evaluations at (i+l,j,k) and (i-l,j,k) are made in line
Gauss-Seidel fashion and those at (i,j+1,k) and (i,j-l,k) are also
made in Gauss-Seidel fashion. It was found that it was best to
order these k-direction block tridiagonal inversions from the top
down, that is, in the descending j direction. Thus, the newest
information is moving in the same direction as the principal
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GAUSS-SEIDEL LINE RELAXATION - STEP 1
BLOCK TRIDIAGONAL INVERSION - j DIR.

Aa U, -, (M +B§a UiM'i, j+l, 6Ui. j-1 A +

+C6U +tau

JiUl,j,k+Ui-lAk +

(*) indicates latest available data
( ) indicates axi symmetric approximatio.n2

component of the flow in the i plane, from the freestream, through
the bow shock wave and towaid the body. Therefore, the data for 6U
at (i,j+l,k) comes from the last k-direction line inversion at j+l
and that for (i,j-l,k) comes from a j-direction line inversion from
step 1. This second step is given below.

GAUSS-SEIDEL LINE RE!AXATION - STEP 2
BLOCK TRIDIAGONAL INVERSION - k DIR.

A8 U,(m+U) +8Ui'7,M+1) k + (CU )

,jA i,J-1,k'

SiUJ+,j+i,jk U-1i,j,k +

i,j~k+l •-= 'Ui,j,k

(*) indicates latest available data

After the inversion procedures for both the j and k directions
within plane i have been completed the next i plane is processed.
In general, each i plane is processed from the last to the first
and then a second time from the first back to the last. However,
if the flow is supersonic in the i-direction, or more p-ecisely, if
the flow component normal to each i plane is supersonic at each
mesh point in the flow, except within the boundary layer region,
then only one sweep needs be made from the inlet i-plane to the
exit i-plane. The algorithm requires one block tridiagonal
inversion for each i,j and i,k line in the mesh per sweep per time
step. It is symmetric with respect to the j and k directions but
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not the i direction.

DISSIPATION

There is no added dissipation in the present method. But this
does not mean that there is no dissipation in the numerical method.
All methods require numerical dissipation to control numerical
instabilities. It is an essential ingredient. The present method
contains dissipation through the upwind flux split difference
approximations to the Euler terms plus the centered difference
approximations used for the viscous terms only. Dissipation
introduced this way is said to be genuine. When dissipation is
introduced by adding new terms to the difference equations that do
not correspond to terms in the governing differential equations, it
is artificial. Some justify the latter kind because they are able
to control the amount added by turning up or down a parameter
multiplying the added term. It can be turned up to the point of
rendering a hyper-active numerical solution comatose, perhaps
masking the effect of a fundamental bug in the program. If
something is wrong in the program, it is better to have a quick
death than a lingering program life. In general, humans can not be
trusted with artificial viscosity in numerical calculations.

Yet dissipation is essential. The successes of computational
fluid dynamics can be explained in terms of the numerical methods
having the right dissipation. Many tried unsuccessfully to solve
the transonic small disturbance equation using central differences
at each mesh point before Murman and Cole (13] made the
modification to use backward differences in supersonic flow
regions. Central differences at supersonic flow mesh points are
anti-dissipative and backward differences are dissipative. Many
rushed to use this strategy on the full potential equation without
success until Jameson [14] devised a rotated difference scheme that
again had the effect of replacing anti-dissipative difference
approximations with dissipative ones. Neither case had terms added
artificially to the difference equations.

The Steger-Warming flux vector split procedure is fairly
dissipative, too dissipative to be used where viscous effects are
important. It was originally intended to be used to solve the
inviscid Euler equations, but it can be modified to greatly reduce
its dissipation so that it can be used for viscous flow as well.
The Roe flux difference vector splitting procedure can also be used
for viscous flow as it is, but under certain flow conditions
additional dissipation, sometimes called entropy correction, needs
to be added. The method of the present paper uses a modified
version of the Steger-Warming procedure described in Ref.[19]. It
is used throughout the flow field in both viscous and inviscid flow
regions. However, it is not always sufficient to control numerical
difficulties and in some regions of the flow the original more
dissipative Steger-Warming procedure is blended in with it. These
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difficulties occur at shock waves.

DIFFICULTIES AT SHOCKS

The numerical difficulties at shock waves can be categorized
as either annoying or catastrophic. The annoying consist of
numerical shock buzz, which is the continual moving of the shock
forward and backwards without ever settling down. This motion can
be either periodic or a chaotic non-repeating motion. When it is
present it occurs near the stagnation streamline of the flow. It
feeds on a supersonic-subsonic interaction at the bow shock wave.
The catastrophic consist of negative temperatures and densities
occurring at the foot of the shock, also usually located near the
stagnation streamline. These difficulties are magnified as the CFL
number is increased. For this study CFL numbers of the order of
one million were used. The workstation word size essentially
limited the CFL to this value, not the numerical method.

The alignment of the grid with the shock near the stagnation
streamline is a key factor in producing or eliminating these
difficulties. Perfect alignment along the entire shock is
impractical unless the mesh is actively shock-fit during the
calculation. It was observed that where errors in the alignment
occur, it was better for the shock to cut through the mesh toward
the body rather than toward the freestream. This tends to reduce
the feedback or interaction mechanism within the subsonic region
behind the strong part of the bow shock.

Secondly, as mentioned above, pure Steger-Warming was blended
in with modified Steger-Warming flux splitting at shock wave
locations. The amount used depended upon the pressure gradient,
PG. The weight function used for it varied from zero to one
according to the formula

WT = 1.0-1.0/(I.0+PG*PG)

Analysis of the Steger-Warming algorithm shows that there is a
considerable mixing of fluid across mesh surfaces. This should
lead to a smearing of the shock that prevents negative densities
and temperatures. This is exactly what occurs when it is used
explicitly. Densities and energies, both positive quantities, are
mixed. However, when it is also used implicitly as in the delta
law form of the difference equations given above, it mixes the
"changes" in densities and energies. These changes can be of
either sign. Negative changes can be mixed forward through the
shock wave causing negative densities and energies in the
freestream at the foot of the shock. To avoid this from happening,
the blending in of pure Steger-Warming was used only to obtain the
explicit AUi.,.k in the above equations and was not used at all on
the implicit side, the left side, of the block matrix equations
given above.
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STABILITY

The present numerical technique is implicit and can be run
with CFL numbers as high as a billion. Yet, a calculation cannot
be started with any arbitrarily large time step size. Initially
the transients in the solution are large and, even though the
method may be stable according to linear theory for any time step
size, it is limited in practice because of the non-linearity of the
governing equations being solved. One would expect this if the
Jacobian matrices appearing on the implicit side of the
approximating finite difference equations, or as in the present
case finite volume equations, change significantly during a single
time step. In impulsively started viscous flow calculations,
exceptionally high shear exists at no slip boundary surfaces.
Large transients can also occur in the flow field after the start
of the calculation, perhaps associated with the movement of a
strong bow shock wave. In a large three-dimensional calculation
it is difficult to anticipate all such transients and then to
determine how large the time step can be a priori. Each
calculation can represent a significant investment in computer time
which can be lost if it becomes unstable.

To avoid this difficulty, a new subroutine was built into the
present three-dimensional Navier-Stokes program to automatically
adjust the time step through periods of strong flow transients. A
time step is chosen initially rather arbitrarily and increased
geometrically during the calculation. At each time step, after the
changes in the solution have been computed implicitly, the changes
are checked to determine if either density at any mesh point in the
flow will change by more than a factor of one-half, or if an
internal energy any where in the flow field will decrease by more
than a factor of one-half. If either condition is true, the time
step during that step is cut to that value for which either the
density or internal energy will be limited to a change of at most
half. The solution changes do not have to be recalculated
implicitly because they depend linearly on the time step size.
They need only to be cut everywhere by the same factor the time
step is cut. An alternative version of cutting the time step
locally was tried with some success also, but it introduces
non-conservation into the calculation which was not preferred. For
the computed results to be presented, reductions in time step size
were observed periodically during the early part of the
calculations, but then the need for time step reductions
disappeared entirely as convergence occurred. In addition, the
time step was increased continuously during the calculation at a
rate that doubled it every eight steps.

COMPUTATIONAL RESULTS

The computer code was applied to two test flow problems for
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which experimental or flight data was available for program
validation.

Lobb Test Case
The first case simulated the experiment of Lobb in 1964 [1] for

Mach 15.3 flow past a sphere of radius 0.635cm. and Reynolds number
1.47x10 4 in air. The freestream pressure was 664 Newtons per
square meter, the freestream temperature was 293K and the body
surface temperature was fixed at 1000K. The shock wave position
was guessed at the start of the calculation and inviscid shock wave
theory was used to define the initial solution. Two cases were
run, perfect gas and seven species reacting air, on an axisymmetric
24x30 mesh shown in Fig.l. Care was taken to fit the mesh to the
shock near the axis of symmetry. The shock wave locations for each
case are shown in Fig.2 compared with the experimental data of Lobb
obtained from a Schlieren photograph. The shock wave represents in
a sense the integrated effect of the state of the gas between the
body and shock. Note the nonequilibrium results compare much
better with the experimental results, indicating significant
nonequilibrium flow is present. Both Candler [3] and Gokcen [4]
used this test case for code validation with excellent agreement
with experiment. Notice the shock ripples near the exit as the
shock crosses through the mesh. Although the shock simulation is
degraded in this region, it did not cause any of the difficulties
discussed earlier because it occurred downstream of the sonic line.

The pressure contours for nonequilibrium flow are shown in
Fig.3 and mass fractions for specie NO are shown in Fig.4 Note
that the NO mass fractions concentrate in a region between the body
and shock. The mass fractions of NO are zero in the freestream,
build up upon passing through the shock wave where dissociated
nitrogen and oxygen are found and then decrease as NO dissociates
in the wall cooled boundary layer. The wall was assumed to be
noncatalytic. The stagnation streamline temperatures are shown in
Fig.5. In the figure the body is located at x=O and the shock
approximately x/r=-O.085. Note that the rotational temperature is
in equilibrium with the translational temperature everywhere except
near the shock, and the vibrational temperature is out of
equilibrium everywhere except where the stagnation streamline
approaches the body fixed wall temperature of 1000K. Figures 6-8
show contours of translational, rotational, and vibrational
temperatures. Note again that the rotational temperature is in
equilibrium with the translational temperature almost everywhere
and that the vibrational temperature is out of equilibrium almost
everywhere. These results agree with those of Candler [3] who
assumed rotational equilibrium and with Gokcen [4] who did not.

RAM-C II Flight Measurements
During the late 1960's sphere cone bodies were rocket

launched, turned around at high altitudes and fired down through
the upper atmosphere [2]. Microwave antenna carried on board the
vehicle made measurements of peak electron number densities. This
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flow field was simulated numerically by Candler [3] with excellent
agreement at all altitudes calculated. In the present study, only
one altitude at 71 km will be considered. The sphere-cone body of
nose radius 0.1524m, cone half angle of 90 and body length of
1.295m traveled at Mach 25.9 The freestream pressure was 4.898
Newtons per square meter and the freestream terperature was 216K.
The body surface was assumed to be noncatalytic and at a fixed
1500K. The axisymmetric 24x30 mesh and pressure contours are shown
in Figs. 9 and 10.

The traaslational, rotational and vibrational temperature
profiles along the stagnation streamline are shown in Fig.11. This
flow exhibited considerable translational, rotational and
vibrational nonequilibrium before arriving at the fixed wall
temperature. The shock wave location appears to be approximately
x/r=-0.1. Figure 12 shows the mass fractions of N2 , 02, NO, N and
0 also along the stagnation streamline. Note that the shock wave
appears here to be located at only x/r=-0.07. The difference is
explained by the need to build up a significant vibrational
temperature before dissociation of N, and 0, can occur as is
formulated by Park's geometric mean temperature [3], (T*TVib) 2 ,
used in the chemical rate equations. Note also that the species
nearly all return to their freestream values at the wall. Although
the wall is noncatalytic, it is sufficiently cool to bring about
recombination of N2 and 02. The contours of N2 and 02 are given in
Figs. 13 and 14. Note also here that the species return to near
their freestream values along the whole length of the body.
Figures 15-17 show contours of translational, rotational and
vibrational temperatures. Note that although these three
temperatures were far out of equilibrium along the stagnation
streamline, the rotational temperature is in fairly good agreement,
as assumed by Candler [3], for most of the flow field and
vibrational temperature remains in nonequilibrium almost
everywhere.

Figure 18 compares the measured peak electron number densities
with the computation. The flow field was calculated in two parts,
the nose s .tion, x < 2.4, and the section downstream of the nose,
x > 2.4. Aithough this flow could have been calculated on a single
mesh, this test served to illustrate the sectional calculation of
a supersonic flow field. This is more efficient because no
calculations need be made until the flow section immediately ahead
is converged. This figure also illustrates the speed of
convergence of the present numerical method. After the nose
section converged, the data at the nose section exit was used to
initialize the flow field of the downstream section. Convergence
was then obtained in only about 16 time steps. Note the comparison
with the experiment is not perfect, but also note that there is a
four decade variation in number densities shown within this figure.
The thought of getting as close to the measured values as shown
here was only a hope a priori to performing the calculation. For
this same altitude of 71 km., Candler [3] fit the data
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exceptionally well on a finer grid.

Generic Hypersonic Vehicle
The computer program was applied to simulate the flow about a

generic hypersonic vehicle at Mach 25 and at high altitude. The
body consisted of a sphere-cone-cylinder with a delta wing
attached. The delta wing tips were folded up to resemble a
hypersonic glider. An engine was then placed below and attached to
the wing-fuselage. The underside of the body downstream of the
engine exit was contoured to form a nozzle surface. A side view of
the body and its dimensions are given in Fig.19 and flight
conditions are given in Fig.20 with a rotated side view of the
vehicle. The computational strategy is given in Fig.21 with a view
of the underneath side of the vehicle. The flow was cut into four
sections, nose, fore body, engine and after body nozzle sections.
Because of body and flow symmetry, only the flow on one side of the
body symmetry plane needed to be computed. Each section was run in
order from the nose to the tail, and only after the preceding
section converged. The solution at the exit plane of each section
was used to initialize the flow in the section just downstream of
itself. If the geometry at the exit resembled the geometry of the
neighboring downstream section, as is the case near the nose, this
initialization facilitated fairly rapid numerical convergence,
otherwise, as at the last section of the body, convergence was
slower.

Heat transfer contours on the nose surface are shown in
Fig.22. Care must be used in reading values from the key or table
at the right side of the figure because the highest values shown in
kilowatts per square meter have been divided by 10 by the plotting
software. Stagnation point heating is 4.9x105 and heating along
the leading edge of the emerging wing approaches 2.8x101 kilowatts
per square meter at the exit of the nose section.

A surface grid for the fore body section is shown in Fig.23
and a cross section oi the mesh along the symmetry plane is shown
in Fig.24. The mesh has thirty finite volume cells from body to
free stream. The flow entering the engine inlet plane was
accelerated to produce thrust et the exit plane without changing
the mass flow rate. The temperatures of the gas entering the
engine inlet was approximately the same as that leaving the engine
exit. The flow acceleration was designed to be approximately equal
to the sum of the vehicle surface drag and engine ram drag. The
flow at each mesh point leaving the fore body mesh and entering the
engine inlet was accelerated and mapped one to one with mesh points
entering the after body nozzle section from the nozzle exit. Other
values at the inlet planes of the engine and after body nozzle
sections were obtained by interpolation from the corresponding exit
planes. Pressure contours and velocity vectors in the syrmetry
plane are shown in Figs. 25 and 26. Note the cleaily defined
laminar boundary layers appearing ir 4the velocity vector plot.
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The surface mesh of the generic hypersonic vehicle is shown in
Fig.27. The trailing edge of the vehicle is a knife edge as are
the engine inlet and exit surfaces. Surface pressure contours in
Newtons per square meter are shown in Fig.28. The peak surface
pressure occurs at the stagnation point and achieves a value of
4.1x10 3. High surface pressures also occur along the leading edges
of the folded delta wing. Surface heat transfer contours are shown
in Fig.29 again with peak heating at the nose and wing leading
edges. Total thrust, lift, drag and heat transfer for the generic
hypersonic vehicle are given in Fig.30. Engine thrust was adjusted
to give a net forward impulse to the vehicle.

A summary of the bookkeeping in terms of section mesh sizes
and number of time steps to convergence is given in Fig.31.
Section 4, the after body nozzle section, took the longest to
converge. The flow in this section had the longest way to go from
the initial condition to converged solution, because of extreme
flow conditions in the expanding nozzle region downstream of the
engine exit. The automatic time step reduction procedure,
described in the stability section of this paper, was called at
each time step during the first 32 time step run, thus reducing the
actual flow time simulated. The program was run an additional 64
time steps, the last half of which did not require automatic time
step reductions. At approximately 96 time steps, the flow settled
out.

The computational cost of this three-dimensional Gauss-Seidel
line relaxation method on a mesh of size ILxJLxKL is approximately
the time taken by ILx(JL+KL) block tridiagonal inversions. On a
SUN SPARCstation 1, a section mesh of 24x31x26, for 32 time steps,
integrating the 13 equations governing chemically reacting thermal
nonequilibrium flow, required approximately 5 days to finish. The
flow field calculation for each section was run in the background
while the workstation was used also to set up the mesh and initial
conditions required for the next flow section. However, the human
times required to set up the surface geometry and mesh for the next
section to be done were usually longer than 5 days. Thus, the
SPARCstation 1, relatively slow by today's standards, was sitting4dle much of the time. Nevertheless, this calculation of the
onequilibrium flow past a complete hypersonic vehicle in powered

flight is believed to be the first anywhere, even at aeronautical
laboratories with supercomputer access.

CONCLUSION

An efficient numerical method has been presented for solving
the compressible Navier-Stokes equations in three dimensions. It
has been extended to solve for the chemically reacting flow in
thermal nonequilibrium encountered under hypersonic conditions.
Experimental and flight test data have been used to validate a
computer program based upon this method. The program has been
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used, on an inexpensive computer workstation, to predict the
complete flow field about a generic hypersonic vehicle in powered
flight.
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Fig.5 Stagnation streamline temperature profiles, Lobb test case.
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Fig.7 Rotational temperature contours, Lobb test case.
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Fig.17 Vibrational temperature contours, RAM-C II test case.
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Fig.19 Generic hypersonic vehicle definition.
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Fig.20 Flight conditions for generic hypersonic vehicle.
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Fig.21 Computational strategy for hypersonic vehicle flow field.
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Fig.22 Heat transfer at nose section of hypersonic vehicle.
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Fig.29 Heat transfer contours at surface of hypersonic vehicle.
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TOTAL DRAG = 236,069 Newtons

ENGINE THRUST = 250,140 Newtons

Fig.30 Thrust, lift, drag and heat transfer for hypersonic vehicle.
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Fig.31(a) Section mesh sizes and time steps to convergence for
numerical solution of flow past a generic hypersonic
vehicle in powered flight.

3D) Pfint 11 ghvasrf.pit 11 ghvasut.pdal

BOOKKEEPING CONTINUED

GENERIC HYPERSONIC VEHICLE

COST OF 3-D GAUSS-SEIDEL LINE RELAXATION

ON A MESH OF DIMENSION IL x JL x KL
IL(JL+KL) BLOCK TRIDIAGONAL INVERSIONS
ARE REQUIRED PER TIME STEP

ROUGHLY ONE WEEK OF COMPUTING TIME
PER SECTION ON A SUN SPARCstation 1

Fig.31(b) Computational cost of numerical solution for flow past a

generic hypersonic vehicle in powered flight.
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